Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data.
نویسندگان
چکیده
The extent of decreases in apparent hepatic clearance and intrinsic hepatic clearance of midazolam (MDZ) after intravenous administration of MDZ with concomitant oral administration of cimetidine (CIM), itraconazole (ITZ), or erythromycin (EM) was predicted using plasma unbound concentrations and liver unbound concentrations of inhibitors. When MDZ was concomitantly administered with CIM, the observed increase in MDZ concentration was successfully predicted using inhibition constants assessed by human liver microsome and liver-to-plasma unbound concentration ratios in rats. However, the extent of interaction with ITZ or EM was still underestimated even taking into account the concentrative uptake of inhibitors into liver. We could predict the degree of "mechanism-based" inhibition by EM on the hepatic metabolism of MDZ, after repeated administration of EM, by a physiological model incorporating the amount of active enzyme as well as the concentration of inhibitor. The maximum inactivation rate constant and the apparent inactivation constant of EM on MDZ metabolism were 0.0665 min(-1) and 81.8 microM, respectively. These kinetic parameters for the inactivation of the enzyme were applied to the physiological model with pharmacokinetic parameters of EM and MDZ obtained from published results. Consequently, we estimated that cytochrome P450 3A4 in the liver after repeated oral administration of EM was inactivated, resulting in 2.6-fold increase in the plasma concentration of MDZ. The estimated extent of increase in MDZ concentration in our study correlated well with the observed value based on metabolic inhibition by EM from published results.
منابع مشابه
Inhibition of CYP3A by erythromycin: in vitro-in vivo correlation in rats.
The prediction of in vivo drug-drug interactions from in vitro enzyme inhibition parameters remains challenging, particularly when time-dependent inhibition occurs. This study was designed to examine the accuracy of in vitro-derived parameters for the prediction of inhibition of CYP3A by erythromycin (ERY). Chronically cannulated rats were used to estimate the reduction in in vivo and in vitro ...
متن کاملIsolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.
Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metaboliz...
متن کاملPhysiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin.
The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokine...
متن کاملDrug interaction of efavirenz and midazolam: efavirenz activates the CYP3A-mediated midazolam 1'-hydroxylation in vitro.
CYP3A4 and CYP3A5 are the most important drug-metabolizing enzymes. For several drugs, heteroactivation of CYP3A-mediated reactions has been demonstrated in vitro. In vivo data suggested a possible acute activation of CYP3A4-catalyzed midazolam metabolism by efavirenz. Therefore, we aimed to investigate the effect of efavirenz on the in vitro metabolism of midazolam. The formation of 1'-hydroxy...
متن کاملPrediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes.
Clinical studies have revealed that plasma concentrations of midazolam after oral administration are greatly increased by coadministration of erythromycin and clarithromycin, whereas azithromycin has little effect on midazolam concentrations. Several macrolide antibiotics are known to be mechanism-based inhibitors of CYP3A, a cytochrome P450 isoform responsible for midazolam hydroxylation. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2001